Rocio Gonzalez-Diaz rogodi@us.es

Sixth EACA International School on Computer Algebra and its Applications SANTIAGO DE COMPOSTELA, JULY 18-21, 2023

Topology Tools for Explainable and Green Artificial Intelligence (topology inside <u>REXASI-PRO</u>)

Rocio Gonzalez-Diaz rogodi@us.es

Sixth EACA International School on Computer Algebra and its Applications SANTIAGO DE COMPOSTELA, JULY 18-21, 2023

- Context: Green and Explainable artificial intelligence (REXASI-PRO)
- Computational topology tools: Persistent homology, barcodes, distance bottleneck, simplicial maps, Persistence modules, morphisms between persistence modules
- Partial matchings between barcodes
- Simplicial maps neural networks

Rocio Gonzalez-Diaz rogodi@us.es

Sixth EACA International School on Computer Algebra and its Applications SANTIAGO DE COMPOSTELA, JULY 18-21, 2023

https://www.slido.com/

#7058060

https://colab.research.google.com/

Combinatorial Image Analysis groupCIMAGROUPSevilla, Spain

http://grupo.us.es/cimagroup

Rocio Gonzalez- Diaz	Belen Medrano	Maria-Jose Jimenez	Nieves Atienza
Head of CIMAgroup	Associate Professor	Associate Professor	Associate Professor
rogodi@us.es Personal page	belenmg@us.es Personal page	majiro@us.es Personal page	natienza@us.es Personal page
Aller .			
Manuel Soriano- Trigueros	Eduardo Paluzo- Hidalgo	Miguel-Angel Gutierrez- Naranjo	Álvaro Torras Casas Research Associate
PhD student	Assistant Professor	Associate Professor	(Cardiff University)
msoriano4@us.es Personal page	epaluzo@us.es Personal page	magutier@us.es Personal page	atorras@us.es Personal page

Javier Perera Lago jperera@us.es

Rocio Gonzalez-Diaz rogodi@us.es

- Context: Green and Explainable artificial intelligence (REXASI-PRO)
- Computational topology tools: Persistent homology, barcodes, distance bottleneck, simplicial maps, Persistence modules, morphisms between persistence modules
- Partial matchings between barcodes
- Simplicial maps neural networks

HORIZON EUROPE | CALL HORIZON-CL4-2021-HUMAN-01-01

Verifiable robustness, energy efficiency and transparency for Trustworthy AI: Scientific excellence boosting industrial competitiveness

Type of action: RIA – Innovation Action

Proposal Budget € million: 4 (100% for all)

European Commission

https://rexasi-pro.spindoxlabs.com/

Twitter: @REXASI-PRO

https://www.linkedin.com/company/rexasi-pro

GOAL:

To design a novel safe secure ethical green and explainable framework to develop an Artificial Swarm Intelligence solution for people with reduce mobility.

The framework will make a trustworthy collaboration among an orchestrator and a swarm formed by autonomous wheelchairs and flying robots.

Fleet of intelligent wheelchairs

equipped with sensors to support the user with **safe driving** (braking, automatic collision avoidance or evasion) and **autonomous navigation**

Fleet of indoor drones

NO pilot, NO GPS(GNSS), NO radio communication and NO light Produce high detail 3D digital models of underground infrastructure: **fast,** accurate and **SAFE**

Navigation in crowded environment

Al for Autonomous Wheelchair in different real-time scenarios: 1)Safety Assistant; 2) Driving Assistant; 3) Route Assistant; 4) Social Navigation. New trustable social navigation approaches will be developed.

Flying robot mapping

Flying robots capable of flying autonomously in an indoor/underground environment and generating a map of the building that would be latter used by the wheelchair. The flying robot will collaborate with an orchestrator with optimal consumption of time and energy.

Collaborative Navigation

Mixed collaborative indoor environment where the swarm communicate with each other in emergency cases. The swarm would include the wheelchairs, the flying robots, the orchestrator, and intelligent cameras for people detection and crowd monitoring.

■Los elementos del sistema

■ Funcionamiento

La Inteligencia Artificial es capaz de detectar situaciones de emergencia, crear un plan de evacuación seguro, ordenar a los drones e indicar el camino seguro para el desalojo del edificio.

https://www.diariodesevilla.es/sevilla/universidad-sevilla-us-inteligencia-artificial-ia_0_1795322279.html

Trabajos realizados por alumnos de la asignatura Modelado y Visualización Gráfica (MVG 2022/2023) <u>https://twitter.com/REXASIPRO_EU</u>

Consortium

SPINDOX LABS srl IT - Coordinator	+
CNR IT (explainability)	+
DFKI DE (wheelchairs)	+
V-RESEARCH NL (secure by design)	+
AITEK SPA IT (safety)	+
KCL UK (verification)	+
USE ES (green and explainability)	+
HOVERING SOLUTIONS ES (drones)	+
EURONET BE (business plan)	+
SUPSI CH (trustable social navigation)	+
SCUOLA DI ROBOTICA IT (ethics)	+

https://cordis.europa.eu/project/id/101070028

Our goals within REXASI-PRO

Main goal

Use computational topology to design new methods to achieve explainable and green artificial intelligence models.

Specific Goals

- 1. Topology-aware reduce the input dataset.
- 2. Build explainable models based on topology.
- 3. Simplify the model preserving its learning capacity.
- 4. Create synthetic samples that can quickly train a model.

Artificial intelligence

Aim: machines that can "think and act" humanly and rationally

Building blocks: ML models

Machine learning

Aim: automatically identify patterns and make predictions or decisions based on the input data.

Examples: Decision trees, random forest, clustering, **neural networks**

Deep learning

Aim: to learn representations of data

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

Deep learning models: LeNet, AlexNet, ResNet, autoencoders, large language models, etc

Deep learning ⊂ Neural networks

Input:
$$\boldsymbol{a} = (a_1, \dots, a_n)$$

Activation function φ

Output layer (for regression): $\mathbf{b} = (b_1, \dots, b_k)$

Output layer (for classification): $softmax(\mathbf{b}) = (p_1, ..., p_k)$

$$softmax : \mathbb{R}^{K} \to [0,1]^{K}$$

$$softmax \ (\mathbf{z})_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}} \qquad j = 1, ..., K.$$
17

Hornik, K., et al. Multilayer feedforward networks are universal approximators. Neural Networks 2, 5 (1989), 359 – 366

Theorem (Universal Approximation Theorem) Let A be any compact subset of \mathbb{R}^n and let C(A) be the space of real-valued continuous functions on A. Then, given any $\epsilon > 0$ and any function $g \in C(A)$, there exists a multi-layer feed-forward network $\mathcal{N} : \mathbb{R}^n \to \mathbb{R}$ approximating g, that is, $||g - \mathcal{N}|| < \epsilon$.

 $Z(x) = -n_1(x) - n_2(x) - n_3(x)$ $+ n_4(x) + n_5(x) + n_6(x)$

https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

Training neural networks

Input data { $x \in \mathbb{R}^n$ with expected output value $y \in \mathbb{R}^k$ }.

- 1. Set an architecture: number of layers, number of neurons in each layer, activation functions, connections (CNN, full connected), output layers (regression, classification, **learning rate**, **stop condition**),...
- 2. Initiate the weights (usually randomly). Compute the output $\hat{y} \in \mathbb{R}^k$ of an input value $x \in \mathbb{R}^n$
- 3. Select a loss function E: for example $MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{k} \sum (y_i \hat{y}_i)$ for regression or cross-entropy loss for classification $LogLoss(\mathbf{y}, \hat{\mathbf{y}}) = -\sum y_i \log (\hat{y}_i)$
- 4. Adjust the weights using a learning method such that back propagation:

$$\Delta \omega_{ij} = -\eta \frac{\partial E}{\partial \omega_{ij}} (\mathbf{y}, \hat{\mathbf{y}})$$

 ω_{ij} changes in a way that *E* always decreases.

Repeat the process until the stop condition is satisfied.

Our goals within REXASI-PRO

Main goal

Use computational topology to design new methods to achieve explainable and green artificial intelligence models.

Specific Goals

- 1. Topology-aware reduce the input dataset.
- 2. Build explainable models based on topology.
- 3. Simplify the model preserving its learning capacity.
- 4. Create synthetic samples that can quickly train a model.

Our goals within REXASI-PRO

Topology-aware reduce the input dataset. Ι.

Topology-based (a) (Synthetic) case 1: representative original dataset datasets to reduce neural network training

resources. Neural Computing and

Applications, 1-17

(2022)

(d) (Synthetic) case 2: original dataset

(g) (Synthetic) case 3: original dataset

(b) (Synthetic) case 1: representative dataset

- 0.55 3.75 3.00 1.25 (e) (Synthetic) case 2: representative dataset
- (h) (Synthetic) case 3: representative dataset

random dataset

(f) (Synthetic) case 2: random dataset

(i) (Synthetic) case 3: random dataset

TOPOLOGICAL DATA QUALITY

A Topological Approach to Measuring Training Data Quality. Arxiv (2023)

Our goals within REXASI-PRO

2. Build explainable models based on topology.

Two-hidden-layer feed-forward networks are universal approximators: A constructive approach. Neural Networks 131, 29-3 (2020)

Simplicial map neural network (SMNN)

N_arphi correctly classifies P

Simplicial-Map Neural Networks Robust to Adversarial Examples. Mathematics 9 (2), 169 (2021)

Our goals within REXASI-PRO

3. Simplify the model preserving its learning capacity.

Both N_{arphi} and $N_{\widetilde{arphi}}$ correctly classify P

Optimizing the Simplicial-Map Neural Network Architecture. Journal of Imaging 7 (9), 173 (2021)

Our goals within REXASI-PRO

4. Create synthetic samples that can quickly train a model.

Dataset Distillation Tongzhou Wang¹² Jun-Yan Zhu² Antonio Torralba² Alexei A. Efros³ ¹Facebook AI Research ²MIT CSAIL ³UC Berkeley

Explainability in Simplicial Map Neural Networks. Arxiv (2023)

Our goals within REXASI-PRO

New open position!!!

https://investigacion.us.es/investigacion/contratos-personal

Referencia: INV-IND-09-2023-I-015.

Relación de contratos convocados: 1.

Convocatoria: Convocatoria Indefinidos (IND) Septiembre 2023.

Dicho proyecto/ayuda/programa financiará el contrato por un período previsto desde **01/12/2023** hasta el **30/09/2025** (fecha fin del proyecto/ayuda/programa).

La actividad del presente contrato se desarrollará en el marco de una línea de investigación « *Computational Topology for Green Artificial Intelligence*», conforme a lo establecido en la convocatoria del proceso selectivo.

La dedicación será de **37,5 horas** semanales que se distribuirán conforme a la siguiente jornada laboral: **De lunes a viernes de 8:00 a 15:30.**

Retribuciones

El sueldo bruto mensual que percibirá el contratado ascenderá a **1.935,45** euros. En dicha retribución se encuentra incluido el prorrateo o parte proporcional de las pagas extras y cuotas a la seguridad social.

Links

http://grupo.us.es/cimagroup

https://rexasi-pro.spindoxlabs.com/

https://www.deeplearningbook.org/

https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/

https://cs.nyu.edu/~mohri/mlbook/

http://neuralnetworksanddeeplearning.com/

https://playground.tensorflow.org/

https://colab.research.google.com/github/google/engedu/blob/main/ml/cc/exercises/intro_to_neural_nets.ipynb

Rocio Gonzalez-Diaz rogodi@us.es

- Context: Green and Explainable artificial intelligence (REXASI-PRO)
- Computational topology tools: Persistent homology, barcodes, distance bottleneck, simplicial maps, Persistence modules, morphisms between persistence modules
- Partial matchings between barcodes
- Simplicial maps neural networks